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Generation IV Reactors

O Several concepts

OVHTR Is a thermal, graphite moderated
and reflected reactor

B NGNP is a demonstration VHTR
OPrismatic fuel
OPebble bed

OHow well do we understand neutron
thermalization in graphite?

B NERI-2001 with ORNL



Neutronics
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Thermal Neutron Scattering
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Unirradiated Graphite

Perfect graphite
consists of planes
(sheets) of carbon
atoms arranged in a
hexagonal lattice.
Covalent bonding
exits between
Intraplaner atoms,
while the interplaner
bonding is of the
weak Van der Waals
type. The planes are
stacked in an “abab”
sequence.
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0.246 nm

OO0 Hexagonal Structure
O 4 atoms per unit cell
O a=b=6.7 A
Oc=2.46 A



Graphite Benchmark
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Moderator Microstructure
Considerations

O The VHTR (prismatic or pebble bed) is designed
as a gas cooled and graphite moderated reactor

O The graphite will be exposed to neutron
iIrradiation, which inevitably will cause changes in
the microstructure of graphite

O Changes in microstructure will be fluence
dependent. Therefore, the graphite
microstructure will change with time

O The thermal scattering cross section is
microstructure dependent and can potentially
change as a function of exposure (time)



Imperfect Graphite — Radiation Damage

O Upon irradiation, the graphite
structure is disrupted through the
formation of vacancies and
Interstitials.

O Due to their greater mobility, the ﬁnq
interstitials diffuse and take interstitial——1> @ 7
position between the planes and %
coalesce to form chains of linear
molecules (C,, C;, C,, etc.).
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O As the linear molecules become :
large, they are postulated to S ———
— transform and form hexagonal o
covalently bonded clusters.
O This eventually leads to the
formation of interstitial “c” planes O Structure 2277
between the hexagonal “abab” [0 Basel plane contract

layers. O c expansion



Imperfect Graphite
Single and Di-interstitials
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Phonon Frequency Distribution
Single Interstitial
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Thermal Scattering Cross Sections
Single Interstitial

Cross Section (b)
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Phonon Frequency Distribution
Di-interstitials
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Thermal Scattering Cross Sections

Di-Interstitials

Cross Section (b)
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Impact on VHTR Analysis
and Design

O Variations in the thermal neutron scattering cross
section affect the thermal neutron spectrum in
the VHTR

O A spectrum harder/softer than predicted would
imply different fuel needs to meet design goals
and clearly affects the overall economic
performance of the reactor

O The current safety conclusions may also be
iImpacted. The analysis of a transient scenario
may have to be altered to account better for
moderator spectral effects
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